A dynamic finite element method for inhomogeneous deformation and electromechanical instability of dielectric elastomer transducers
نویسندگان
چکیده
We present a three-dimensional nonlinear finite element formulation for dielectric elastomers. The mechanical and electrical governing equations are solved monolithically using an implicit time integrator, where the governing finite element equations are given for both static and dynamic cases. By accounting for inertial terms in conjunction with the Arruda–Boyce rubber hyperelastic constitutive model, we demonstrate the ability to capture the various modes of inhomogeneous deformation, including pull-in instability and wrinkling, that may result in dielectric elastomers that are subject to various forms of electrostatic loading. The formulation presented here forms the basis for needed computational tools that can elucidate the electromechanical behavior and properties of dielectric elastomers that are used for engineering applications. 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
Electrostatically Driven Creep in Viscoelastic Dielectric Elastomers
We utilize a nonlinear, dynamic finite element model coupled with a finite deformation viscoelastic constitutive law to study the inhomogeneous deformation and instabilities resulting from the application of a constant voltage to dielectric elastomers. The constant voltage loading is used to study electrostatically driven creep and the resulting electromechanical instabilities for two different...
متن کاملTheoryofdielectricelastomers ⋆ ⋆
In response to a stimulus, a soft material deforms, and the deformation provides a function. We call such a material a soft active material (SAM). This review focuses on one class of soft active materials: dielectric elastomers. When a membrane of a dielectric elastomer is subject to a voltage through its thickness, the membrane reduces thickness and expands area, possibly straining over 100%. ...
متن کاملComputational modeling of electro-elasto-capillary phenomena in dielectric elastomers
We present a new finite deformation, dynamic finite element model that incorporates surface tension to capture elastocapillary effects on the electromechanical deformation of dielectric elastomers. We demonstrate the significant effect that surface tension can have on the deformation of dielectric elastomers through three numerical examples: (1) surface tension effects on the deformation of sin...
متن کاملViscoelastic effects on electromechanical instabilities in dielectric elastomers
We present a computational study of the effects of viscoelasticity on the electromechanical behavior of dielectric elastomers. A dynamic, finite deformation finite element formulation for dielectric elastomers is developed that incorporates the effects of viscoelasticity using the nonlinear viscoelasticity theory previously proposed by Reese and Govindjee. The finite element model features a th...
متن کاملEquilibrium and stability of dielectric elastomer membranes undergoing inhomogeneous deformation
Dielectric elastomers are capable of large deformation subject to an electric voltage, and are promising for uses as actuators, sensors and generators. Because of large deformation, nonlinear equations of state, and diverse modes of failure, modeling the process of electromechanical transduction has been challenging. This paper studies a membrane of a dielectric elastomer deformed into an out-o...
متن کامل